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Abstract. We simulate excitation of metal clusters by highly charged, energetic ions, analyzing electron
emission in terms of discrete ionization probabilities. Our test case is the collision of Ar8+ on the cluster
Na+

9 at velocities around the electronic Fermi velocity of bulk sodium. The calculations are performed
with a density-functional approach, using the time-dependent local density approximation. We �nd that
ionization takes place on an extremely short time scale of less than 5 fs. The preferred �nal charge state
depends sensitively on the impact parameter. High ionization can easily be achieved in su�ciently close
collisions. Direct trapping through the by-passing ion is found to be of little importance at the velocities
considered.

PACS. 36.40.Cg Electronic and magnetic properties of clusters { 36.40.Wa Charged clusters { 36.40.Gk
Plasma and collective e�ects in clusters

1 Introduction

Highly charged metal clusters have gained considerable
interest in recent time [1]. A number of experimental
studies investigate Coulomb dissociation of these systems,
mainly in terms of critical sizes of stability [2–4]. However,
the mechanisms governing the fragmentation processes
strongly depend on the conditions under which the high
charge states were prepared. For example, conventional
techniques using nanosecond laser pulses [2,3] inevitably
heat up the cluster, leading to thermally excited systems
in which evaporation of neutral atoms competes with fis-
sion decay. A “cleaner” way of charging the cluster is
thus often desirable. One possible technique uses impact
with fast, sometimes highly charged, ions [4]. These col-
lision processes take place on a femtosecond time scale
and leave the vibrational state of the cluster essentially
unchanged. This leads to shifts of the stability threshold
towards higher charge-mass ratios than those which can
be achieved with conventionally laser-ionized clusters.

A complete theoretical description of these energetic
collision processes in principle calls for the full time-
dependent Schrödinger equation for the many-body sys-
tem, a formidable task which necessarily requires some
approximations. The most simple approach at a micro-
scopic level is time-dependent Hartree-Fock [5], which re-
lies on the assumption of independent particle motion in a
common mean field. However, many-fermion systems are
characterized by strong interparticle correlations, which
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makes a straightforward Hartree-Fock approach in gen-
eral too inaccurate. The way out of this dilemma is to
account for correlations by means of a local effective po-
tential which then can safely be used in connection with an
effective time-dependent Hartree approach. We thus come
into the realm of time-dependent density functional theory
(TDDFT) [6–8], which we are going to employ here for a
study of the collision dynamics in metal clusters. TDDFT
is frequently invoked as a computationally efficient tool for
studying the dynamics of many-body systems. In actual
calculations, one usually works within the time-dependent
local density approximation (TDLDA) [6]. Apart from be-
ing physically more sound and quantitatively more accu-
rate than semiclassical approaches such as Vlasov [9,10]
or hydrodynamics, TDDFT has the additional advantage
that it allows one to compute more detailed information
on the collision process: using the time-dependent Kohn-
Sham (TDKS) single-particle orbitals as input, approxi-
mate probabilities for each discrete final charge state of
the system can be deduced. Hence, direct contact with
experimental data can be established.

Previous applications of TDDFT to sodium clusters
[11–13] have demonstrated an overwhelming dominance of
the plasmon resonance over the whole investigated range
of excitation energies high into the multi-plasmon regime.
Those large-amplitude plasmon oscillations may be ac-
companied by strong electron emission, which leaves the
system in a highly charged state, thus providing a seed for
fragment formation or even Coulomb explosion at later
times [1]. In a recent work we have investigated the global
properties of electron emission following a strong and
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instantaneous excitation, idealizing a fast ion passing by
[14]. It is the aim of this paper to carry through a more
realistic and detailed analysis for the case of Na+

9 clusters
excited by fast Ar8+ ions. In the following, we are going
to employ a detailed description of the collision process
in terms of ion probabilities and analyze also the tempo-
ral and spatial structure of the electron cloud in order to
obtain more information on the nature of the ionization
mechanism. We mention that related work has recently
been published in [15,16], using femtosecond laser pulses
rather than fast ions to ionize the cluster.

The paper is outlined as follows: In Section 2, we give a
short record of the ingredients entering our TDLDA cal-
culations of the electronic dynamics (Sect. 2.1) and the
excitation process (Sect. 2.2). In Section 3, we describe
the way to compute the ionization probabilities from the
TDLDA. Results on ionization probabilities are then dis-
cussed in Section 4. Finally, in Section 5 we focus on the
mechanism of ionization, in particular in terms of electron
trapping by the by-passing ion.

2 The model

2.1 Ionic background and valence electrons

The violent excitations of clusters which we are going to
consider, last for such a short time (typically up to t ≤
100 fs) that, to a very good approximation, ions can be
considered as fixed during that time. At high excitation
energy, details of the ionic structure seem furthermore to
play only a minor role in the electron response [11]. We
thus treat the ionic background in jellium approximation,
using a soft jellium surface, which is crucial to reproduce
the experimental plasmon resonance energy (2.62 eV for
our test case Na+

9 ) in a TDLDA calculation [17,18].
The electrons are treated in TDDFT. They are rep-

resented by single-particle orbitals φj(r, t) satisfying the
TDKS equations. For the exchange-correlation (xc) po-
tential we use the TDLDA with the parametrization of
Gunnarsson and Lundqvist [19]. The TDLDA is local both
in space and time, i.e. the xc potential vTDLDA

xc (r, t) only
depends on the values of the electron density n(r, t) =∑N
j=1 |φj(r, t)|

2 at time t and location r. This approxima-
tion can be expected to be good only if the time depen-
dence of the process under study is sufficiently slow. In
practice, however, it was shown to give quite good results
even for cases of rather rapid time dependence [20]. A more
detailed description of our procedure and applications to
cluster physics is given in [13].

2.2 Excitation through a by-passing ion

We deal with excitations through energetic, possibly
highly charged ions passing by at a distance b from the
center of the cluster. We restrict ourselves to situations
where the projectile stays well outside the cluster bounds
(beyond ∼ 10 a0 for our test case Na+

9 ) so that only its

long-range Coulomb potential needs to be taken into ac-
count. In other words, we consider impact parameters b
ranging from grazing collisions (b ∼ 10 a0) to very periph-
eral ones (b ≥ 35 a0). Such excitations deliver to the clus-
ter a very short electromagnetic pulse covering all spectral
states with about equal weight. Feedback of the interac-
tion on the exciting ion can, in turn, safely be neglected
for massive ions at high velocity. We thus assume that the
ionic trajectory itself is not perturbed by the field of the
cluster [10]. Furthermore, the retarded parts of the elec-
tromagnetic interaction are disregarded, as the velocity of
the ion is small as compared to the speed of light. For
simplicity, the calculations are performed on an axially
symmetric grid (for details of the model see [11,13]), and
we orient the z-axis of the coordinate system (with the ori-
gin at the center of the jellium distribution) at each time
t towards the current position of the projectile. The ap-
proximation (which turns out to be reasonable [10]) hence
consists in neglecting the axial symmetry breaking in the
scattering geometry, so that the cluster effectively sees a
cylindrically symmetric time-dependent external potential

Vion(ρ, z, t) =
−Q√

ρ2 + (z − d(t))2
, (1)

where ρ and z denote the radial and z component of the
cylindrical coordinates. Here, Q is the charge of the ionic
projectile with velocity v, and d(t) =

√
b2 + v2(t− t0)2 is

its distance to the cluster’s center of mass. The instant of
closest approach is set to be at t0 = 0. However, the actual
computation starts at an earlier time, t0 −∆t, where the
ion is still far away, safely before the ion-cluster interac-
tion plays a role. Through variation of the impact param-
eter b, velocity v and charge Q, the excitation amplitude
may be tuned. Here we will consider the highly charged
Ar8+ ion with velocities v = 12.5, 25 and 50a0/fs, i.e. ap-
proximately 0.5vF, vF and 2vF, where vF is the electronic
Fermi velocity in bulk sodium. The corresponding values
of ∆t are chosen such that the initial distances between
the projectile and the cluster are safely large (well beyond
100 a0).

A few words are in order about the nature of this exci-
tation process [14]. We consider here a situation where the
final state of the ion is not measured with high precision. It
thus can be assumed that the ion moves on a mean trajec-
tory (which moreover is not affected by feedback from the
collision). This means that the ion becomes a strictly clas-
sical source of a time-dependent external field. It transfers
a certain average excitation energy E∗, but induces also a

substantial energy uncertainty ∆E∗ ≈
√
E∗ into the elec-

tronic state of the cluster. As a result, final states with
different degrees of ionization can arise. The probabilities
of their appearance will be discussed in Section 3.

A further property of the external field (Eq. (1)) is that
the effective reaction time is extremely short, of the order
of 2R/v (where R is the cluster radius), which for the cases
we consider is typically below the time scale of one plas-
mon oscillation of Na+

9 (1.5 fs). The excitation hence es-
sentially amounts to an almost instantaneous acceleration
of the electron cloud as a whole. Such a simplistic picture
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had been successfully employed in previous exploratory
calculations [11–14]. A competing process, however, is the
immediate trapping of electrons by the huge attractive
field of the ion, which might occur in the case of very
close collisions and if sufficient time for a direct electron
transfer is available. We will show later that this trapping
process is less important than dipole-induced emission, for
the fast collisions which we investigate here (see Sect. 5).

3 Calculation of ionization probabilities

The description of electron escape within TDDFT relies
on the basic relation

N(t) =

∫
V

d3r n(r, t) (2)

which associates the number of bound electrons N(t) with
the time-dependent density n(r, t) found within the fi-
nite volume V of an “analyzing box” centered around
the ionic background. In our calculations, V consists of
a cylinder of length 32 a0 and radius 16 a0. From N(t)
one can calculate the total number of escaped electrons
as Nesc(t) = N(t=−∞)−N(t). Equation (2) is based on
the assumption that the electron flux crossing the bound-
ary of this analyzing box corresponds to that part of the
total time-dependent wave function which is in the con-
tinuum. We hence assume that all important bound-state
contributions to the density are contained inside the an-
alyzing box V, whereas the continuum contributions are
outside. Strictly speaking, such a criterion is meaningful
only after long times, when the continuum contributions
have propagated very far away from the center. Never-
theless, equation (2) has proven to be a useful definition
of the bound-state occupation probability in a number of
applications involving atoms in strong fields [20–23].

A detailed link with experiments is established through
probabilities P k(t) of finding the excited clusters in one of
the possible charge states k to which they can ionize. It is
possible to write down explicit expressions for the P k(t)
in terms of bound-state occupation probabilities Nj(t) as-
sociated with the single-particle KS orbitals φj ,

Nj(t) =

∫
V

d3r nj(r, t) =

∫
V

d3r |φj(r, t)|
2. (3)

Note that the φj (which we shall label in the following
by their initial quantum numbers), as well as their orbital
densities nj , have, strictly speaking, no rigorous physical
meaning in TDDFT. One should therefore consider the
P k[{nj}](t) deduced from them only as a reasonable ap-
proximation to the exact probabilities.

Let us now discuss how one can obtain the
P k[{nj}](t)’s from the Nj ’s. We start with the simple ex-
ample of a system which at t = 0 has only one doubly
occupied orbital, such as the helium atom [20,21] or a Na2

cluster in a spherical jellium model. In this simple case,
the P k(t) are, in fact, explicit functionals of the total den-
sity. If the bound-state occupation probability (Eq. (3))

for these systems is given by N1s(t), then the probabili-
ties for the possible charge states are P (0)(t) = N1s(t)

2,
P (1+)(t) = 2N1s(t)(1−N1s(t)), P

(2+)(t) = (1−N1s(t))
2.

These expressions have been constructed to fulfill the re-
quirement that the probabilities must sum up to unity.
The square in P (0) and P (2+) and the factor of 2 in
P (1+) account for the degeneracy, as we work with a spin-
unpolarized system.

To generalize the above considerations, we start with
the relation

1 =
∏
j

(Nj + (1−Nj))
νj =

∏
j

(Nj + N̄j)
νj , (4)

where νj is the j-orbital degeneracy (ν1s = ν1p0 = 2,
ν1p1 = 4, for unpolarized Na+

9 ). Note that the time-
dependent orbitals keep their initial degeneracy for the
present, spin-independent excitation mechanism (Eq. (1)).
We then perform the multiplication on the right-hand side
of equation (4) and sort the resulting terms according to
the number of occupied and unoccupied orbitals (factors
Nj and N̄j = 1 − Nj , respectively). We thus obtain for
Na+

9 :

P (1+)(t) = N2
1sN

2
1p0
N4

1p1
(5)

P (2+)(t) = 4N2
1sN

2
1p0
N3

1p1
N̄1p1 + 2N2

1sN1p0N̄1p0N
4
1p1

+ 2N1sN̄1sN
2
1p0
N4

1p1
(6)

P (3+)(t)= 6N2
1sN

2
1p0
N2

1p1
N̄2

1p1
+8N2

1sN1p0N̄1p0N
3
1p1
N̄1p1

+N2
1sN̄

2
1p0
N4

1p1
+ 8N1sN̄1sN

2
1p0
N3

1p1
N̄1p1

+ 4N1sN̄1sN1p0N̄1p0N
4
1p1

+ N̄2
1sN

2
1p0
N4

1p1
(7)

...

It is straightforward to extend these formulae to higher
ionization probabilities, but higher correlations will then
become increasingly important. In a mean field descrip-
tion, one should only expect reliable estimates for ioniza-
tion numbers much smaller than the total electron num-
ber.

4 Ionization probabilities in cluster-ion
collisions

As a typical example for cluster-ion collisions, we discuss
the test case of Ar8+ on Na+

9 . The Ar8+ ion has a velocity
of v = 12.5 to 50a0/fs, which is between half and twice the
electronic Fermi velocity vF of Na. We consider a variety
of impact parameters b, ranging from 10 to 40 a0. The
excitations become more violent the closer the collisions
are.

4.1 Time evolution of the ionization probabilities

In Figure 1 we compare the time evolution of various key
observables: the dipole signalD(t) = 〈D̂〉=

∫
Vd3r z n(r, t),
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Fig. 1. Example of a typical response of the electron cloud
for the collision of Ar8+ with velocity v = 50 a0/fs = 2 vF

on Na+
9 at impact parameter b = 22a0. We show the dipole

moment (upper part), the total number of escaped electrons
(middle part) and ionization probabilities P (n+) (lower part)
as a function of time.

the number of escaping electrons Nesc(t), and the ioniza-
tion probabilities. Results are shown for a typical test case
with v = 50a0/fs = 2 vF and b = 22a0. The Coulomb field
(Eq. (1)) of the ion acts for an extremely short time, ac-
tually less than 1 fs. At the instant of closest approach
(t = 0), we see a sudden change of the dynamical state
of the system. The dipole oscillations are excited almost
instantaneously, as can be seen in the uppermost panel
of Figure 1. The subsequent electron emission follows im-
mediately and is accomplished within the time of about
one plasmon cycle (less than 2 fs), as can be seen from
the number of escaped electrons Nesc in the middle panel.
The ionization probabilities (lowest panel) are formed, of
course, at the same fast time scale. The rapid loss of elec-
trons causes a pronounced damping of the dipole oscil-
lation in the earliest stage of the reaction. After that,
the electron cloud oscillates steadily, while the ionization
probabilities have stabilized at their asymptotic values.
All competing processes follow at a slower pace: the inter-
nal damping of the dipole oscillations (Landau damping,
electron-electron collisions) has characteristic times much
larger than the dipole period itself [24]; charge-induced
fission (involving ionic motion) [25] and thermal emission
processes [26] occur far beyond 100 fs. They thus do not
interfere with the much faster ionization induced by direct
electron emission.

Fig. 2. Comparison of Nesc (upper panel, in fraction of total
number of electrons) and ionization probabilities P (n+) (lower
panel) as computed in the analyzing box versus the whole com-
putational grid. The same line types are used for both cases.
They are easily distinguished by the fact that results from
the analyzing box start to change earlier and converge more
rapidly. Kinematical conditions are the same as in Figure 1.

To compute the quantities presented in Figure 1, the
density integrations have been performed over the analyz-
ing box V, as discussed in Section 3. It has been shown
earlier that this is a reliable procedure, for the dipole mo-
ment of clusters [13] as well as for the number of electrons
escaping atoms in strong fields [20–23], but we still have
to check its validity for ionization probabilities and num-
bers of escaping electrons in the case of clusters. This is
illustrated in Figure 2, where we have plotted both the
number of escaping electrons and the ionization probabil-
ities: i) computed in the analyzing volume V as defined
in Section 3, and ii) computed from unrestricted integra-
tion over the whole volume of the numerical grid. The
latter is about forty times larger than V and has absorb-
ing boundaries. As one could have expected, the first steep
increase of Nesc and P (n+) occurs with a delay of about
2 fs, if calculated on the total grid. This is related to the
time which passes between the moment the ionized elec-
trons cross the boundaries of the analyzing box until they
completely leave the numerical grid. Moreover, Nesc and
P (n+) rise more slowly on the total grid. This is related
to the broad spectrum of velocities for the escaping elec-
trons, which leads to a large variety of traveling times
across the grid. But most important, all quantities ap-
proach asymptotically the values attained (earlier) in the
analyzing box. Altogether, this comparison shows that, up
to details of the time profile, electron emission is robustly
and efficiently described within the analyzing box V. We
shall hence rely on this evaluation in the following.
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Fig. 3. Ionization probabilities P (n+) as function of time for
the collision of Ar8+ with velocity v = 50 a0/fs = 2 vF on Na+

9 .
Results are shown for three di�erent impact parameters b, as
indicated.

4.2 Dependence on the impact parameter

Variation of the impact parameter at fixed velocity allows
us to change systematically the violence of the collision.
The temporal pattern of excitation nevertheless remains
the same, namely quasi-instantaneous dipole excitation
and subsequent rapid electron emission, both occurring
in less than 2 fs. However, differences show up in the
amplitude of the dipole oscillations and in the number
of emitted electrons, which both decrease with increas-
ing impact parameter b. In Figure 3 we compare the time
evolution of the ionization probabilities (see Sect. 3) at
v = 50 a0/fs = 2 vF for three different impact parame-
ters: b = 12, 22 and 32 a0. All cases evolve at the same
time scale, but the distribution of ionization substantially
changes. While the “asymptotic” probability decreases
monotonically with increasing charge state for the largest
impact parameter, b = 32 a0, the lowest charge state 1+
already falls below the next two higher states at b = 22a0,
and a complete turnover of the ordering has taken place
at the smallest impact parameter b = 12 a0.

The situation becomes more transparent if the asymp-
totic values for the ionization probabilities are plotted ver-
sus impact parameter. We are taking here the values at
t = 12 fs where the emission processes have already con-
verged, see Figure 3. The result is shown in Figure 4. The
probability for the initial charge state 1+ decreases mono-
tonically, as expected. For charge states ≥ 2+, we see a
rise and a fall of each ionization probability with decreas-
ing b, such that the next higher charge state is following
the previous one. The doubly ionized state appears first,
with a maximum around b = 25 a0. It is followed by the

Fig. 4. The �nal ionization probabilities P (n+)(t = 12 fs) as
function of the impact parameter for the case of the velocity
v = 2 vF.

triply ionized state which dominates around b = 20 a0,
and so forth. The height of the maxima decreases slowly
with growing charge. This is due to the fact that in this
regime several different charge states coexist with compa-
rable weight, and their probabilities must still sum up to
unity. But in their region of dominance, even the higher
charge states still attain peak probabilities of more than
0.25.

4.3 Ionization cross sections

Similar patterns for P (n+) versus b are observed at the
lower ion velocities which we have considered. There is
only a minimal shift of the maxima towards smaller b.
The major differences lie in the absolute values of the
asymptotic probabilities, with the tendency to increase
with decreasing velocity. This means that more reaction
time (allowed by lower velocities) enhances the ionization.
To see the overall chances for obtaining a certain charge
state k > 1+, one can look at the corresponding total
production cross section σk, defined as

σk = 2π

∞∫
0

db b P k(t→∞). (8)

Results for the P k are available for 10 a0 < b < 40 a0,
so that we have to restrict the integration in equation (8)
to this interval. This means that we obtain in fact lower
bounds to the σk. On the other hand, from Figure 4 we
also see that, at least for the charge states 2+ through 5+,
the probabilities have their maximum in the considered
range of b and decrease sharply for smaller/larger values
of b. In addition to this, note that the significance of the
P k for smaller values of b is strongly reduced, due to the
weight factor b in the integral in equation (8). It is thus
a good approximation to neglect their contributions to σk

for b < 10 a0, even in the lower velocity cases (v = 0.5vF

and v = vF), in which the maxima are slightly shifted
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Fig. 5. The total ionization cross sections for the various �nal
charge states and for di�erent velocities, as indicated.

to smaller values. This, actually, would mainly affect the
highest charge states.

The resulting σk are shown in Figure 5, for three dif-
ferent velocities at and around vF. The cross sections de-
crease with increasing charge state, but the decrease is
slow enough so that higher charge states still acquire ap-
preciable values. For example, the production of charge
state 5+ has a cross section of at least 6 × 109 barn. One
also notes that for a given charge state the cross section
decreases with increasing projectile velocity. The effect is
largest for charge state 3+ (almost a factor 2 between
v = 0.5vF and v = 2vF) and less pronounced for the higher
charge states 4+ and 5+. To summarize, we see that colli-
sions with fast ions with velocities in the electronic Fermi
velocity range can be used as an efficient method to pro-
duce highly ionized states of a cluster.

5 Trapping versus direct emission

The nature of the ionization process deserves further in-
spection. Two different mechanisms are conceivable. First,
the Coulomb potential of the ion can suppress the po-
tential barrier of the cluster so that the electrons at the
Fermi level can immediately flow into the Coulomb field
of the ion and are most likely trapped in its attractive
potential. And second, the Coulomb force of the rapidly
by-passing ion transfers almost instantaneously a certain
amount of momentum to the electron cloud, which trig-
gers a pronounced collective oscillation. The oscillating
electron cloud then immediately emits its content of con-
tinuum electrons within the first few cycles; we call this
direct emission [14]. It is obvious that the relative weight
of these competing mechanisms depends on the reaction
time, i.e. on the ion velocity. Well below the Fermi veloc-
ity (v ∼ vF/10), the contact time becomes long enough
for an efficient barrier suppression, and we expect trap-
ping to become relevant. Direct emission will become the
dominating process for v ∼ vF. Let us now consider this

Fig. 6. Snapshots of the electron density for the case v = 2 vF

and b = 22a0 at various stages at and shortly after the time of
closest approach of the ion. The ionic position is indicated by
a circled cross, at each considered instant. The density (inte-
grated over the radial and angular coordinates) is drawn along
the symmetry axis (z-axis). Note that a logarithmic scale is
used for the density in order to display more clearly the pro-
cesses in the tail of the distribution.

ionization mechanism in more detail in the high velocity
case.

5.1 A visual analysis of trapping

In order to disentangle both mechanisms, direct emission
versus trapping, we have to investigate the emission pro-
cess in more detail. This is most conveniently done by
looking at snapshots of the density profile at different
times. In practice, we display the density along the z-axis,
averaged over the radial direction. The example of a high
velocity collision with v = 2vF and intermediate impact
parameter b = 22 a0 is shown in Figure 6. As the ion
comes close to the cluster, we see that the electron cloud
is gradually deformed towards the ion. However, there is
not particularly much electron density gathered directly
at the ion, neither at contact time nor in the subsequent
time steps (note the logarithmic scale for the density). At
best, a long electron tail stretches out between the ion and
the cluster. The ion moves too fast away for the cloud to
follow and leaves this scenario virtually naked. It is inter-
esting to see a much similar electron wing extending in
exactly the opposite direction with about half a plasmon
cycle delay. This confirms the picture that, in this case
of high ion velocity, we are seeing predominantly a plas-
mon oscillation shaking off its continuum electrons at ev-
ery turning point. The effect is of course most pronounced
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Fig. 7. Same as Figure 6, but for v = 0.5 vF and b = 22 a0.

at the first turning point, with the outgoing electron flux
directed towards the ion, because the exciting Coulomb
pulse is attractive. Thus we can conclude that we see al-
most exclusively direct emission in this test case. We have
counterchecked this by comparing with an excitation by a
pure instantaneous initial dipole shift leading to the same
average excitation energy. The emission pattern looks very
similar to the one shown in Figure 6, and the resulting ion-
ization probabilities are also in quantitative agreement. To
complete the reasoning, we have also looked at two other
impact parameters, b = 12 and 32 a0, and found the same
predominance of direct emission.

As discussed above, the scenario is expected to change
with lower velocity. We thus explore a test case with
v = 0.5vF, again at the intermediate impact parameter
b = 22 a0. The corresponding density snapshots are dis-
played in Figure 7 (note the different time and length
scales as compared to Fig. 6). The overall picture is qual-
itatively similar to the higher energy case, in particular
concerning the role of the plasmon in “shaking off” the
continuum electrons. Still, the lower projectile velocity
allows the electron cloud to follow the projectile more
closely, as one can see from the small density peak which
is always found near the ion. Although the general level
and pattern of emitted density remain comparable to the
high energy case, one may expect that this density peak
following the ion will eventually result in a larger number
of trapped electrons. We shall now analyze this in a more
quantitative manner.

5.2 An estimate of the number of trapped electrons

The simplest way to analyze the number of trapped elec-
trons is to integrate the electron density in a spherical box

Fig. 8. Number of electrons trapped in the vicinity of Ar8+

as a function of time, analyzed in spherical volumes around
the ion, using three di�erent radii as indicated. The Ar8+ ion
is passing by the Na9

+ cluster with velocity v = 0.5 vF and
impact parameter b = 22 a0.

with radius Rtr around the projectile. We thus define the
number of trapped electrons by

Ntrap(Rtr; t) =

∫
d3rn(r, t)θ(Rtr − |r−Rion(t)|), (9)

where Rion(t) indicates the position of the ion, and θ(x) =
1 for x > 0 and 0 for x < 0. There is some arbitrariness in
choosing the trapping radius Rtr. A small Rtr will confine
the analysis to deeply bound states, while a very large one
allows for loose trapping. We therefore consider three dif-
ferent choices: Rtr = rs, 2rs and 3rs (where we have taken
rs = 4a0 in sodium). Furthermore, following the time evo-
lution of Ntrap(Rtr; t) allows one to investigate the stabil-
ity of the trapping. In Figure 8 we show Ntrap(Rtr; t) as
a function of time for the impact parameter b = 22 a0

and projectile velocity v = 0.5vF, which favours trapping
(Sect. 5.1). The number of trapped electrons of course in-
creases with Rtr, but the time profiles of the three curves
are very similar. They display a pronounced peak at the
time of closest approach (around t = 0) with a large num-
ber of temporarily attached electrons (up to 2 for the high-
est value of Rtr). The number of trapped electrons then
quickly decreases again and stabilizes towards an asymp-
totic value of a small fraction of an electron (less than
0.05). The initial accumulation of electron density around
the projectile thus quickly dissolves, indicating that the
electrons are in fact not truly trapped by the projectile
potential well. They do not even seem to remain in a loose
vicinity of the projectile, as indicated by the results for the
largest Rtr.

It should be noted that, although this electron “dis-
persal” takes place on a short time scale (of less than 10
fs), it is technically demanding to ascertain it, because
of the high projectile velocity. Indeed, at v = 0.5vF, the
projectile travels at 12.5 a0 per fs, which means that at
t=14 fs (Fig. 8), it is at a distance d ∼ 180 a0 away
from the cluster’s center of mass. It hence requires a huge
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Fig. 9. Number of electrons trapped in the vicinity of Ar8+

(Rtr = 12 a0) as a function of time, for various impact param-
eters at �xed velocity v = 0.5 vF (upper panel) and for various
ion velocities at �xed impact parameter b = 22 a0 (lower panel).

computational grid (400 a0 along z direction in our test
case) to identify a plateau inNtrap and thus to pin down an
asymptotic value for trapping. A computation in a small
box (50 a0 for example, as typically chosen in a full 3D
calculation [27]) would have to stop at t = 4 fs, leading to
a totally erroneous value of Ntrap ∼ 0.4.

5.3 Influence of projectile velocity and impact
parameter

As discussed in Section 5.2, the evaluation ofNtrap accord-
ing to equation (9) provides a simple measure of the num-
ber of trapped electrons. In view of the small asymptotic
values of Ntrap shown in Figure 8, it is sufficient to con-
tinue our analysis with the largest box radius Rtr = 12a0.
Figure 9 shows Ntrap(Rtr = 12 a0; t) for various impact
parameters b at fixed v = 0.5 vF (upper panel) and vari-
ous velocities v at fixed b = 22a0 (lower panel). All curves
display the same pattern, as discussed in Section 5.2: a
short attachement of a possibly large number of electrons,
followed within less than about 5 fs by a decrease to a very
small value of Ntrap (at most 0.2 for the most favourable
case, with v = 0.5vF, and b = 12 a0). We can thus con-
clude that, in the energy and velocity range under con-
sideration, one never observes large asymptotic values of
electron trapping. A possibly large number of electrons
may be attached initially, but this lasts only for a short
time: sizable trapping is unstable.

It is finally interesting to summarize our findings by
plotting the asymptotic values Ntrap(t = 12 − 14 fs) as a
function of the projectile velocities and impact parame-
ters, and to compare Ntrap to the total number of escaped

Fig. 10. Asymptotic numbers of escaped electrons, Nesc, and
of electrons trapped in a 12 a0 vicinity of Ar8+, Ntrap, for var-
ious ion velocities at �xed impact parameter b = 22 a0 (upper
part), and for various impact parameters at �xed ion velocity
v = 0.5 vF (lower part).

electrons Nesc (which is also stabilized at that time). This
comparison is performed in Figure 10. While Nesc may
reach sizable values, in particular at low velocity (up to 5-
6 at b = 12a0 for v = 0.5vF), Ntrap never exceeds 0.2, and
becomes more and more negligible with respect to Nesc,
the larger the impact parameter or the projectile velocity.
Altogether, we find that 0.3% ≤ Ntrap/Nesc ≤ 4%), which
clearly shows that trapping is negligible as compared to
direct emission in the kinematic range we consider here.

6 Conclusion

We have investigated electron emission from a metal clus-
ter following excitation by a fast and highly charged ion
passing by. The actual test case was Ar8+ colliding with
Na+

9 at velocities between half and twice the electronic
Fermi velocity of Na and various impact parameters, from
grazing to very peripheral collisions. As theoretical tool for
the dynamics of the electron cloud of the cluster we used
the TDLDA. In particular, we have been concerned with
the ionization probabilities deduced from the occupation
numbers of the time-dependent single-particle orbitals. We
find sizable ionization probabilities and cross sections for
producing high charge states of the cluster. The excita-
tion process as such proceeds at a very fast time scale of
clearly less than one plasmon cycle. The subsequent elec-
tron emission and the way to the final ionization probabil-
ities is also extremely fast, taking only about one plasmon
cycle. Moreover, in the kinematic regime we have consid-
ered here, we find that the excitation is so short that vir-
tually no trapping takes place. Direct emission following
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the instantaneous dipole excitation of the electron cloud
is thus the predominant mechanism. The short time scales
involved and the dominance of direct emission leave the
ionic background almost completely undisturbed during
the reaction and thus make energetic ion impact a very
clean excitation process well suited for studies of cluster
dynamics in highly ionized states.

The authors thank the French-German exchange program
PROCOPE 95073 and the Institut Universitaire de France for
�nancial support during the realization of this work.
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